In the weak excitation limit in dilute gases, when saturation and collision effects are negligible, line broadening occurs due to spontaneous decay (width Γsp), Doppler effect, and, if atoms interact with tightly focused cw laser beams, also due to limited transit time τtr of atoms through the laser beam. Consider a two step excitation process, in which Doppler broadening is avoided using counterpropagating laser fields in the excitation. The conventional knowledge says that the the resultant lineshapes are given by the Lorenz profile [1]
P (Δ) = πΓ*/ (Δ2 + Γ2); 2Δω =Γ* = Γsp + 1/τtr, (1)
where Δ is the one-photon detuning of laser fields off from the two-photon resonance, and 2Δω is the FWHM width. If an atom from a supersonic beam at a flow velocity vf crosses a Gaussian laser beam of FWHM L, then it is reasonable to assume τtr = L/vf .
We consider excitation of the Na(5S1/2) HF sublevel F = 2 with with lifetime τsp = 76ns by two counter-propagating laser beams, which models an ideal two-level quantum system. Laser in the first step is focused to L1 = 30µm using a cylindrical lens and detuned by Δν1=100MHz off from resonance with the 3S1/2, F'' = 1 → 3p1/2, F' = 2 transition. The second laser is collimated to L2 = 1000µm, while its frequency is scanned across the two-photon resonance. The detuning Δν1 is sufficient to ensure that the intermediate level is virtual. Both lasers cross the atomic beam with flow velocity of vf = 1200m/s at right angles. The time dependence of the effective Rabi frequencies are given by Ω(t)=Ω0 exp(-2t2/τtr2), which corresponds to a Gaussian effective laser intensity profile I(z) = I0 exp(−4z2/L2) along the atomic beam axis z. The spatial distribution of the effective Rabi frequency is given by Ωef f (z) = Ω1(z)Ω2(z)/Δω1.
We have obtained analytical solutions to this model porlem which show that the lineshape of excitation of the upper state is described by the Voight profile with HWHM which can be approximated (within the accuracy level of 10%) by the expression
Δωres = sqrt(Γsp/4 + 4.8 · ln(2)/τtran 2). (2)
Importantly, the value of Δωres exceeds the intuitive width Δω (1) by a factor of three if the broadening occurs predominantly due to limited transit time, i.e. when τtran < 1/Γsp = τsp.