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Abstract. We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on
the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where
the wave functions begin to overlap, the mechanism considered here involves only the long-range dipole
interaction and is in principle possible in a static system. It is related to the process of intermolecular
Coulombic decay (ICD). In addition, we include the interaction-induced motion of the atoms and the
effect of multi-particle systems in this work. We find that the probability for this ionization mechanism
can be increased in many-particle systems featuring attractive or repulsive van der Waals interactions.
However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that
this process contributes to the autoionization of Rydberg gases in the form presented here, but it may
still act as a trigger for secondary ionization processes. As our picture involves only binary interactions,
it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the
ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of
more complex systems, such as the coupling of many pair states proposed in [P.J. Tanner et al., Phys. Rev.
Lett. 100, 043002 (2008)].

PACS. 32.80.Zb Autoionization – 32.80.Ee Rydberg states – 34.20.Cf Interatomic potentials and forces

1 Introduction

Ultracold Rydberg gases have been found to autoionize,
typically on time scales of μs [2]. Different processes have
been identified as possible mechanisms leading to this ion-
ization. Direct photoionization by black-body radiation is
one of the important processes. However, under the typical
conditions of ultracold experiments, the photoionization
rates are still dominated by interaction-induced collisions
of Rydberg atoms, which lead to Penning ionization,

Ryd(n) + Ryd(n) → Ryd(n′) + ion + e−. (1)

In this process the long-range interactions accelerate the
initially ultracold Rydberg atoms towards each other until
they collide, and the ionization cross sections are typically
very large [3,4]. Recent experiments have identified colli-
sional ionization to be one of the main ionization mech-
anisms of ultracold Rydberg gases [5,6], although other
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processes also seem to be involved in the dynamics of
Rydberg autoionization. Experiments with dense samples
show that ions can be observed even before collisions may
have occurred [1]. This is attributed to a series of reso-
nant dipole-coupled pair states which may allow one of
the atoms of a pair to ionize within a time much shorter
than the timescale of interaction-induced motion. In more
dilute gases, simulations of atom trajectories in many-
particle systems are found to underestimate the observed
ionization rate at high principal quantum numbers [7].
Apparently there exists a distance-dependent coupling of
two-particle or many-particle states to other states involv-
ing the continuum. This dipole coupling induced autoion-
ization may also be relevant for the stability of Rydberg
macromolecules [8].

Here, we consider the simple case of a direct coupling
of a pair state to the ionization continuum (see Fig. 1).
We restrict ourselves to the range of distances where the
wavefunctions do not yet overlap. Once the atoms reach
the overlap region, the ionization probability can be en-
hanced by orders of magnitude [9]. Two atoms, both in
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Fig. 1. (Color online) Resonant coupling to the continuum.
Two atoms are prepared in state nl at distance R. Due to
dipole coupling, one atom can be ionized, while the other one
is transferred to n�l� with n∗� < n∗/

√
2.

state |nl〉 and separated in space by a distance R, are
coupled by the dipole-dipole interaction in such a way
that one atom is ionized, while the other one undergoes a
transition to a lower Rydberg state |n′l′〉. Such a process
becomes possible whenever the energy difference between
the |nl〉 and |n′l′〉 states is larger than (or at least equal
to) the binding energy of the Rydberg electron in the |nl〉
state. The rate of this process depends strongly on the ini-
tial Rydberg state and on the distance between the atoms.
The process has been discussed for thermal gases [10] and
for dense cold gases [11]. The mechanism is related to the
interatomic or intermolecular Coulombic decay (ICD), a
collective autoionization process which has been intensely
studied in clusters [12–15], and has recently been observed
between OH− and H2O molecules [16]. ICD occurs when
an excited particle relaxes into a lower state, while in
a radiationless process a neighboring particle picks up
the energy and is ionized. While in the typical ICD pro-
cess one of the involved particles is an ion (see references
above) or atom [17] in an excited state with only one or a
few empty low-lying energy levels, highly excited Rydberg
atoms feature a large number of unpopulated states below
the Rydberg state. In the present work we investigate how
relevant such a process can be for the autoionization of
a dilute ultracold Rydberg gas, when interaction-induced
motion of the atoms and many-particle effects are taken
into account.

The paper is organized as follows: in Section 2 the cal-
culation of the ionization rates based on dipole interaction
is described. The ionization probability of a pair of atoms
on an attractive interaction potential is discussed in Sec-
tion 3. Section 4 addresses the influence of the surrounding
atoms in a cloud on this accelerated pair. Finally, autoion-
ization in a many-body system of repulsively interacting
atoms is investigated in Section 5.

2 Calculation of rates

Consider a pair of atoms, both in a state |nl〉, at an
internuclear separation R. The rate for the transition
|nl, nl〉 → |n′l′, E, l′′〉 can be expressed in terms of the
dipole matrix element of the bound-bound transition and
the photoionization cross section for the bound-free transi-

tion [18]. Atomic units are used in the following. Averaging
over a uniform angular distribution, the rate is given by

Γnl,n′l′(R) =
cσPI(nl)

πωnl,n′l′R6
|Dnl,n′l′ |2, (2)

where Dnl,n′l′ is the reduced matrix element for the elec-
tric dipole transition between the two bound states |nl〉
and |n′l′〉, ωnl,n′l′ > 0 denotes the energy difference be-
tween these states, and σPI is the photoionization cross
section for a transition from |nl〉 to the continuum with
the same energy difference.

The total ionization rate must take into account tran-
sitions to all lower states |n′l′〉 of one atom, which yield
sufficient energy for the ionization of the other atom. The
ionization energy of an atom in the state |nl〉 with the
effective quantum number n∗ is equal to its binding en-
ergy, Eion = |En∗ | = 1/(2n∗2). This means that ionization
is possible for transitions to levels n′∗ with binding ener-
gies |En′∗ | = 1/(2(n′∗)2) larger than the threshold value
|Eth| = 2Eion = 1/n∗2. From here we immediately obtain
the condition for ionizing levels as n′∗ ≤ n∗/

√
2. The total

rate can then be obtained by summing over all states n′∗
that satisfy the above ionization condition:

Γnl(R) =
�

n′∗≤n∗/
√

2
l′=l±1

Γnl,n′l′(R). (3)

The photoionization cross sections are evaluated using the
semiclassical formula given in [19–21],

σPI(n, l) =
2
3c

1
ωnl,n′l′n∗ 3

�

Δl=±1

L5
c

l+0.5
D2

Δl(ωnl,n′l′), (4)

where the sum corresponds to the transitions l → l′′ =
l + Δl into the continuum with Lc = max{l, l′′}. The co-
efficients

DΔl =
�
− sin(πΔμ)

2
−

√
π

x
Φ

′
Δμ(x) + Δlq

√
π

x
ΦΔμ(x)

�

(5)
are expressed via the conventional Airy function and its
derivative:

ΦΔμ(x) =
1√
π

∞∫

0

dξ cos(xξ + ξ3/3 + πΔμ) (6)

Φ
′
Δμ(x) =

d

dx
ΦΔμ(x); x =

�
ωnl,n′l′L

3
c

2

�2/3

(7)

Δlq = Δl +
1

5Lc

�
1 − 1

n∗2 ωnl,n′l′

�
. (8)

Here Δμ denotes the difference between the quantum de-
fects μl for series l and l′′ involved into the photoioniza-
tion: Δμ = μl+Δl − μl. For small and large values of the
argument x the functions ΦΔμ(x) and Φ

′
Δμ(x) can be ap-

proximated by simple asymptotical expressions [19].
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Fig. 2. (Color online) Rate coefficient Γ̃ for different initial
states nl of rubidium (in atomic units): ns (dotted line), np
(solid line), nd (dashed line). The inset shows the same data
in a log-log scale to visualize the power law scaling.

The radial matrix elements for the transitions to
bound states are calculated numerically by integrating the
Schrödinger equation for the corresponding energies using
the Numerov algorithm [22]. For the low-lying levels the
wavefunctions are determined using a model potential fit-
ted to one-electron energies [23].

In order to eliminate the R dependence of the rate, we
define a coefficient Γ̃nl, such that

Γnl(R) =
Γ̃nl

R6
. (9)

The calculated coefficient Γ̃nl for rubidium is plotted in
Figure 2 as a function of the quantum numbers n and l.
The oscillatory behavior of the rate coefficient has the fol-
lowing simple explanation. As discussed above, the ioniza-
tion can occur if the binding energy En′∗ of the final level
n′∗ exceeds the threshold value Eth. The excess energy
ε = |En′∗ | − |Eth| = 1/2n′∗2 − 1/n∗2 is carried away by
the emitted electron. Since the photoionization cross sec-
tion decreases rapidly with increasing energy of the pho-
toelectron ε, the transitions to the |n′l′〉 level closest to
the threshold will give the main contribution to the ioniza-
tion rate. The energy spacing between the bound levels in-
creases with decreasing n. Therefore for different |nl〉 lev-
els the corresponding highest possible ionizing |n′l′〉 levels
appear at different separations from the threshold Eth,
leading to different excess energies ε. Hence, the ioniza-
tion rates for different |nl〉 levels will be larger or smaller,
depending on how close to the threshold is the first ioniz-
ing |n′l′〉 level.

Neglecting the oscillations, the average rate coefficient
exhibits a power law scaling with the principal quantum
number, Γ̃ = anb, as can also be seen from the logarithmic
representation in Figure 2 (inset). The best fit parameters
a and b corresponding to the different quantum numbers l
are listed in Table 1. Note that the scaling exponent b can
be calculated analytically for the case of hydrogen [24],
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Fig. 3. (Color online) Distance dependence of the rates Γ
(given in s−1) for different initial states nl: ns (dotted line), np
(solid line), nd (dashed line) for n = 100 (upper three traces)
and n = 60 (lower three traces).

Table 1. Fit parameters for a power law scaling of the rate
coefficient of the form Γ̃ = anb.

l a b

0 (s) 0.014 5.74

1 (p) 0.092 5.52

2 (d) 0.240 5.46

yielding b = 5.333 independent of l, which is close to the
fitted value for rubidium with l = 2.

Figure 3 shows the calculated rates Γnl as a function
of the interatomic distance R for different quantum num-
bers. For typical interatomic distances and high principal
quantum numbers the rates are in the mHz range, so that
the contribution of this ionization process seems negligible
for experiments with Rydberg gases. Rates above 100Hz
are only possible for very high principal quantum num-
bers (n > 100) at short distances (∼1 μm). Due to the
excitation blockade observed for high Rydberg states, the
minimum distance between Rydberg atoms shortly after
the excitation is limited, typically to a few μm [25,26].
Furthermore, the interaction-induced acceleration will not
allow the atoms to remain at rest on the timescale of an au-
toionization process. This phenomenon will be discussed
in the next section.

Despite the low rates, the process described here can
still act as a trigger for additional ionization processes.
Collisions of other Rydberg atoms with the electron and
ion produced can lead to secondary ionization and ioniza-
tion avalanches. In some configurations, these avalanches
are even found to create ultracold plasmas [27].

3 Ionization probability during motion

Two interacting Rydberg atoms will experience a force
given by the gradient of the interaction potential, which
can be either attractive or repulsive. Consider an atom
pair on an attractive van der Waals potential with the
coefficient C6 such that

VvdW = −C6

R6
. (10)
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The atoms will attract each other and collide within sev-
eral μs for the typical initial distance of a few μm. Due
to the motion of the atoms the resonant ionization rates
become time-dependent, increasing dramatically as atoms
approach each other.

In order to investigate the importance of this mecha-
nism in such a dynamic system, we calculate the ionization
probability during the motion. Let p(t) be the probability
for having been ionized at a time t, and P = p(tcoll) be
the probability for ionization before a collision occurs. P
can be evaluated by integration,

dp = (1 − p(t))Γ (R(t)) dt (11)

P = 1 − exp
(
−

∫ tcoll

0

Γ (R(t)) dt

)
. (12)

As long as the exponent in equation (12) is small compared
to unity, this can be simplified as

P ≈
∫ tcoll

0

Γ (R(t))dt, (13)

where tcoll is the time at which the pair distance is so
small that the electronic wave functions begin to over-
lap. This distance is set to Rcoll � 4n∗2, below which
collisional ionization occurs [4]. R(t) is evaluated using
the classical equation of motion on the potential given by
equation (10). The coefficient C6 is taken from the calcu-
lations in reference [28].

The collision time tcoll for atoms with mass M initially
at a distance R0 may be evaluated analytically assuming
that the initial velocity of the atoms is zero. In this case
the collision occurs with zero impact parameter and tcoll

can be estimated by writing down the equation of energy
conservation with the reduced mass μ = M/2,

V (R0) = V (R) +
1
2
μ

(
dR

dt

)2

, (14)

and integrating from R = R0 to the collision radius R =
Rcoll,

∫ tcoll

0

dt =
∫ Rcoll

R0

dR√
2μ−1 (V (R0) − V (R))

. (15)

The collision time does not depend strongly on the exact
value of Rcoll and can be estimated by setting Rcoll = 0.
It is also independent of the exact shape of the interaction
potential at short distances, as the atoms spend most of
their time at larger separations. The integral can thus be
solved for a simple van der Waals potential to yield the
collision time

tcoll ≈ 0.22
√

M

C6
R4

0. (16)

For large initial distances (i.e. R0/Rcoll 	 1, V (R0) = 0),
the ionization probability can be written analytically as

P ≈
√

M

4C6
Γ̃

∫ R0

Rcoll

dRR−3 ≈
√

M

4C6
Γ̃

1
2R2

coll

. (17)
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Fig. 4. (Color online) Various parameters of ionizing Rydberg
pairs 60D–60D (solid lines), 80D–80D (dashed lines), 100D–
100D (dotted lines) as a function of the initial interatomic sep-
aration R0: (a) resonant dipole ionization probability P before
the collision; (b) collision time tcoll; (c) relative increase of the
ionization probability P/P0 for a moving pair compared to a
static pair.

Figure 4a shows the ionization probability P , calculated
by numerical integration of equation (13), as a function
of the initial distance for pairs of atoms in the states
60D (C6 = 1 × 1021), 80D (C6 = 2.4 × 1022), and 100D
(C6 = 2.8 × 1023). The ionization probabilities increase
slightly with increasing initial distance, approaching the
value found from equation (17). In order to reach these
probabilities, the observation time must be at least as long
as the collision time plotted in Figure 4b. For a limited ob-
servation time the rates will decrease again with increasing
R0. Despite the higher value of Γ̃ for increasing principal
quantum number n, the probability P decreases, as the
atoms spend only a short time in close proximity to each
other before they collide. If we let

P0 = Γ (R(0))tcoll ≈ 0.22
√

M

C6

Γ̃

R2
0

(18)
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be the ionization probability for a static pair interacting
during the same time tcoll, then we obtain the relative
probability P/P0 (see Fig. 4c). For large R0 we obtain
from equations (17) and (18) the relation

P/P0 ≈ 1.14 R2
0/R2

coll. (19)

For typical initial distances R0 the attractive motion in-
creases the ionization probability by one to two orders of
magnitude compared to the static pair.

4 Influence of surrounding atoms

So far we have considered the simple case of two atoms. In
a large ensemble of atoms, e.g., an ultracold atom cloud,
all the surrounding atoms will contribute to the ioniza-
tion rate. But as the arrangement of atoms is random and
not a crystalline structure, there will always be exactly
one nearest neighbor. Consider an atom with its nearest
neighbor at a distance R0. According to equation (9), the
ionization rate for this pair is given by

Γpair =
Γ̃

R6
0

. (20)

To estimate the importance of the surrounding atoms, we
assume a constant density ρ and calculate an additional
rate Γs induced by all other atoms except the nearest
neighbor by integrating from the radius R0 to infinity (as
the nearest neighbor is at R0 by definition, all other atoms
must be at larger distances):

Γs =
∫ ∞

R0

4πR2 ρ Γ (R)dR (21)

here Γ (R) = Γ̃ /R6 is the ionization rate of a pair at dis-
tance R. The integral yields

Γs =
4π

3
ρΓ̃

1
R3

0

. (22)

For a homogeneous density ρ the average nearest neighbor
distance can be estimated as a = (5/9)ρ−1/3 [29]. Assum-
ing R0 = a, we can express ρ in terms of R0 and obtain

Γs =
4π

3

(
5
9

)3

Γ̃
1

R6
0

(23)

≈ 0.718 Γpair. (24)

The ionization rate induced by all the atoms with R > a
(only pairwise interactions are considered) is therefore
smaller than the rate induced only by the nearest neigh-
bor at R0 = a. The ratio Γs/Γpair will be even smaller for
very close pairs with R0 < a. If the atoms are accelerated
due to an attractive van der Waals interaction, the 1/R6

scaling of the potential accounts for a much larger acceler-
ation towards the nearest neighbor compared to any of the
surrounding atoms. The nearest neighbors will therefore
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approach each other quickly and the influence of the sur-
rounding atoms will be even smaller compared to a static
system.

In order to take the complete distribution of nearest
neighbors into account, a Monte Carlo simulation has been
performed, where a large number of atoms are placed ran-
domly in space. Figure 5 shows the results for different
scalings Γ ∝ 1/Rα of an accumulative quantity Γ for
a randomly picked atom, taking different numbers N of
its neigbors into account. The results shown are the to-
tal rates of 100 randomly picked atoms, scaled to the re-
spective value of a single neighbor for easier comparison.
For a scaling of α = 6 clearly only the first neighbor has
an effect, while for α ≤ 3 the accumulated rate increases
quickly.

Generally, for quantities Γ scaling as 1/R3 the influ-
ence of the surrounding atoms becomes significant. This
can be seen from the fact that the integral in equation (21)
then diverges and can only be evaluated with an upper
limit Rmax. Expressing the limits of the integral in terms
of the average nearest neighbor distance a with R0 = a
and Rmax = βa (β > 1) the integral yields

Γ3,s = 2.155 lnβ Γ3,pair (25)

where Γ3,s and Γ3,pair now represent arbitrary accumula-
tive quantities scaling as 1/R3. For β = 100 (a realistic
value considering a magneto-optically trapped cloud), the
contribution of the surrounding atoms outweighs the near-
est neighbor by an order of magnitude. Depending on the
scaling of the quantity Γ with the interatomic distance,
the influence of other atoms surrounding a nearest neigh-
bor pair may or may not be significant. This should be
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kept in mind when estimating energy shifts of an atom in-
teracting via van der Waals (1/R6) or dipole-dipole (1/R3)
interactions. In the van der Waals case, it may be suf-
ficient to consider only the nearest neighbor, while the
dipole-dipole interaction requires taking a larger number
of atoms into account. Note that in the case of dipole-
dipole interactions, the angular dependence also has to be
considered.

The estimates presented in this section justify the cho-
sen approach to consider an attractively interacting sam-
ple as a collection of pairs, and to derive ionization prob-
abilities in a pair picture as described above, even if the
atoms are embedded in a larger ensemble.

5 Repulsive many-particle dynamics

The derivation of the resonant ionization rates in terms of
a two-atom picture is only justified if the atoms are pulled
together by an attractive force, thereby reducing the influ-
ence of the surrounding cloud. If the atoms are prepared
in states exhibiting repulsive interaction, this assumption
cannot be made. In this case the dynamics of the whole
sample of atoms must be considered. An isolated pair of
atoms will be drawn apart immediately, so that the ioniza-
tion probability is small. In a many-particle system where
all atoms are repelling each other, each particle may come
into the vicinity of other atoms several times while mov-
ing across the cloud [7]. This increases the average time
spent at close distance and thus increases the ionization
probability. In this simplified picture, the atoms do not
collide at all. We thus need to specify the probability for
resonant dipole ionization as a function of time, P = P(t).

Figure 6 shows the ionization probability for a pair of
atoms in the 60S state (with C6 = −1021 au). Two isolated
atoms in free space will be accelerated away from each
other, and the ionization probability reaches a steady-
state value. The same nearest-neighbor pair of repelling
atoms placed in the middle of a large atom cloud has a
higher ionization probability, as both atoms come close to
other particles while moving away from each other. The
probability to ionize one of these two specific atoms in-
creases steadily in time. In the calculation presented in
Figure 6, a density of Rydberg atoms of 1.5× 109 cm−3 is
assumed, and the atoms surrounding the initial pair are
placed randomly in space. The dynamics of the system is
then calculated by solving the equations of motion for all
atoms according to the van der Waals interaction poten-
tials in the same way as described in reference [7], and the
results are averaged over 50 runs of the simulation. For
typical nearest-neighbor distances of about 4 μm, the sur-
rounding atoms in this example enhance the probability
to ionize within 30 μs by roughly a factor of 1.4. How-
ever, the total ionization probability within this time is
of the order of 10−10, which is far from being observable
experimentally.
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Fig. 6. (Color online) Ionization probability for a pair of re-
pelling atoms in state 60S (C6 = −1021 au) for different initial
distances: (a) 2 μm, (b) 4 μm, (c) 6 μm. The dashed lines
show the calculated probabilities for two atoms in free space,
the solid lines show the results of multi-particle calculations
for the same pair embedded in a cloud of interacting atoms.

6 Conclusion

We have presented calculations of ionization rates and
estimates of many-particle effects for an autoionization
process of ultracold Rydberg atoms based on resonant
dipole–dipole interaction. Our approach involves only bi-
nary interactions and a direct coupling to a continuum
state. The estimated rates for this process are not suffi-
cient to explain the observed autoionization in dense or
strongly interacting Rydberg gases not caused by colli-
sions [1,7]. Taking into account the motion and the influ-
ence of a many-particle environment, the expected ioniza-
tion probability for this process increases, but it is still
too low to be observed experimentally. This suggests that
other interaction-induced ionization processes exist, which
contribute considerably during time scales shorter than
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the collision time of the atoms. Furthermore, even a pro-
cess with a low intrinsic rate may act as a trigger for sec-
ondary ionization.

We believe that collective effects of larger ensembles
of interacting atoms may have a great influence on dipole
coupling induced autoionization. As a next step, the model
could be extended to a coupling of many intermediate pair
states as proposed by [1], and for further analysis the sys-
tem could be described in terms of multi-particle states
instead of pair states.

The discussion of the dynamics in many-body systems
presented here is not restricted to the autoionization pro-
cess but may also be helpful for other dynamical processes
involving Rydberg interactions.
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Zhang, R. Côté, E.E. Eyler, P.L. Gould, Phys. Rev. Lett.
93, 063001 (2004)

26. K. Singer, M. Reetz-Lamour, T. Amthor, L.G. Marcassa,
M. Weidemüller, Phys. Rev. Lett. 93, 163001 (2004)

27. W. Li et al., Phys. Rev. A 70, 042713 (2004)
28. K. Singer, J. Stanojevic, M. Weidemüller, R. Côté, J. Phys.
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